Improving reading performance by file prefetching mechanism in distributed cache systems

Author:

Gui Jing1ORCID,Wang Yongbin1,Shuai Wuyue1

Affiliation:

1. State Key Laboratory for Media Convergence and Communication Communication University of China Beijing China

Abstract

SummaryDistributed cache systems are utilized to enhance I/O performance between computing applications and storage systems. However, the traditional file access predictors employed in these cache systems are only suitable for workloads with simple file access patterns, rendering them inadequate for the complex access patterns found in big data computing scenarios. In this article, we propose a file access predictor (DFAP) based on WaveNet, which has exhibited promising results in file access tasks when compared to other baseline models. Cache systems are often constrained by limited cache space due to cost, cluster size, and other factors. In big data scenarios, cached data and prefetched data often compete for limited space. To address this issue, we introduce a cache prefetching algorithm (CBAP) for cache systems, which is based on cost‐benefit analysis to improve cache utilization. Furthermore, we implement a novel file prefetching framework on Alluxio, which accelerates computing jobs by up to 18%.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3