Modelling the time‐dependent mechanical behaviour of clay rocks based on meso‐ and micro‐structural viscous properties

Author:

Sun Yufeng1ORCID,Pardoen Benoît1,van den Eijnden Bram2,Wong Henry1

Affiliation:

1. LTDS University of Lyon ENTPE Lyon France

2. Department of Geoscience and Engineering Delft University of Technology Delft Netherlands

Abstract

AbstractClay rocks are multiphase porous media having a complex structure and behaviour characterised by heterogeneity, damage and viscosity, existing on a wide range of scales. The mesoscopic scale of mineral inclusions embedded in a clay matrix has an important role in the mechanisms of deformation under mechanical loading by cracking and creeping. This study introduces a micromechanical approach to model the time‐dependent mechanical behaviour of clay rocks. A heterogeneous clay rock is represented at the mesoscopic scale as a composite material consisting of rigid elastic mineral inclusions (quartz, calcite and pyrite) embedded in a clay matrix. To describe the damageable rock behaviour and its failure modes at the small scale, interfaces between different mineral phases and within the clay matrix are considered. Viscous effects are incorporated inside the clay aggregates, with intergranular microfractures propagating in the clay matrix, in order to investigate their contribution to the creep behaviour of clay rock at the macroscale. The mesostructure of the clay rock is represented in digital 2D Representative Elementary Areas (REAs). The overall mesoscale behaviour of the clay rock under mechanical solicitation is numerically obtained from the REA by computational homogenisation within a two‐scale finite element squared framework. Then, the model is validated at mesoscale against experimental data. The variability of the material response and the time evolution of the mineral interfacial damage state are investigated in relation to the small‐scale properties and failure, while considering mesostructure variability. The results can give some valuable insights into creep behaviour of the clay rock from a small‐scale perspective.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3