Soil–pile interaction in vertical vibration in inhomogeneous soils

Author:

Anoyatis George1ORCID,François Stijn2ORCID,Orakci Olgu1ORCID,Tsikas Aggelos3ORCID

Affiliation:

1. Hydraulics and Geotechnics Section Department of Civil Engineering KU Leuven – Bruges Bruges Belgium

2. Structural Mechanics Section Department of Civil Engineering KU Leuven – Arenberg Leuven Belgium

3. Quantum Neural Technologies QNT Athens Greece

Abstract

AbstractThis paper develops a novel reference analytical solution for axially loaded piles in inhomogeneous soils, extending the pioneering elastodynamic model of Nogami and Novak (1976) to piles embedded in vertically inhomogeneous soils. Following the classical earlier model, the pile is modelled as a rod, using the strength‐of‐materials solution, and the soil layer as an approximate continuum, which rest on rigid rock. The approximation lies in reducing the number of dependent variables by eliminating certain stresses and displacements in the governing elastodynamic equations: the vertical normal and vertical shear stresses in the soil are controlled exclusively by the vertical component of the soil displacement. Soil inhomogeneity is introduced via a power law variation of shear modulus with depth, and perfect bonding is assumed at the soil–pile interface. The proposed generalized formulation treats two types of inhomogeneity by employing pertinent eigen expansions of the dependent variables over the vertical coordinate. The response is expressed in terms of generalized Fourier series and includes: (i) displacements and stresses along the pile and the pile–soil interface; and (ii) displacement and stress in the soil. Contrary to available models for homogeneous soils, the associated Fourier coefficients are coupled, obtained as solutions to a set of simultaneous algebraic equations of equal rank to the number of modes considered.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3