Counting orientations of random graphs with no directed k‐cycles

Author:

Campos Marcelo1,Collares Maurício2ORCID,Mota Guilherme Oliveira3

Affiliation:

1. Trinity College Cambridge United Kingdom

2. Institute of Discrete Mathematics Graz University of Technology Graz Austria

3. Instituto de Matemática e Estatística Universidade de São Paulo São Paulo Brazil

Abstract

AbstractFor every , we determine the order of growth, up to polylogarithmic factors, of the number of orientations of the binomial random graph containing no directed cycle of length . This solves a conjecture of Kohayakawa, Morris and the last two authors.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software

Reference11 articles.

1. On the number of orientations of random graphs with no directed cycles of a given length;Allen P.;Electron. J. Combin,2014

2. The number of orientations having no fixed tournament;Alon N.;Combinatorica,2006

3. P.Araüjo F.Botler andG. O.Mota.Counting graph orientations with no directed triangles.2020arXiv:2005.13091.

4. Counting orientations of graphs with no strongly connected tournaments;Botler F.;Discret. Math.,2022

5. Counting H‐free orientations of graphs;Bucié M.;Math. Proc. Camb. Philos. Soc.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3