Affiliation:
1. Trinity College Cambridge United Kingdom
2. Institute of Discrete Mathematics Graz University of Technology Graz Austria
3. Instituto de Matemática e Estatística Universidade de São Paulo São Paulo Brazil
Abstract
AbstractFor every , we determine the order of growth, up to polylogarithmic factors, of the number of orientations of the binomial random graph containing no directed cycle of length . This solves a conjecture of Kohayakawa, Morris and the last two authors.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de São Paulo
Subject
Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software
Reference11 articles.
1. On the number of orientations of random graphs with no directed cycles of a given length;Allen P.;Electron. J. Combin,2014
2. The number of orientations having no fixed tournament;Alon N.;Combinatorica,2006
3. P.Araüjo F.Botler andG. O.Mota.Counting graph orientations with no directed triangles.2020arXiv:2005.13091.
4. Counting orientations of graphs with no strongly connected tournaments;Botler F.;Discret. Math.,2022
5. Counting H‐free orientations of graphs;Bucié M.;Math. Proc. Camb. Philos. Soc.,2023