Impact of land use history and soil properties on soil mite communities (Acari, Mesostigmata) inhabiting stands growing on post‐agricultural land

Author:

Malica Jacek1ORCID,Rączka Grzegorz2ORCID,Turczański Krzysztof3ORCID,Andrzejewska Agnieszka4,Skorupski Maciej1ORCID,Urbanowski Cezary K.1ORCID,Kamczyc Jacek1ORCID

Affiliation:

1. Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology Poznań University of Life Sciences Poznań Poland

2. Department of Forest Management Planning, Faculty of Forestry and Wood Technology Poznań University of Life Sciences Poznań Poland

3. Department of Botany and Forest Habitats, Faculty of Forestry and Wood Technology Poznań University of Life Sciences Poznań Poland

4. Department of Agricultural Chemistry and Environmental Biogeochemistry, Faculty of Agronomy, Horticulture and Bioengineering Poznań University of Life Sciences Poznań Poland

Abstract

AbstractDecades of agriculture in a former—type of ecosystem, for example, deciduous forests—result in severe habitat degradation. The planted tree species encounter harsh conditions due to physically and chemically transformed soil environments. In addition, afforestation itself significantly modifies the upper soil horizons. It may impact the soil fauna communities, including mites from the Mesostigmata order (Mesostigmata = Gamasida). Due to their sensitivity, mesostigmatid mites are good bioindicators of changes in the soil. A decrease in the density, species richness, and diversity of mites indicates disturbances in the soil environment and may confirm the impact of agricultural practice on the soil environment. Our research aim was to examine the impact of soil properties and land use history on the mesostigmatid mite communities in stands growing on forest and post‐agricultural lands. These sites were afforested with different tree species (Betula pendula Roth., Fagus sylvatica L., Pinus sylvestris L., and Quercus robur L.). Thus, 21 research plots were established on forest and post‐agricultural land, each on rusty soils considered to be one of the most common in Central European forests. We collected a total of 567 soil samples during three sampling sessions in spring and autumn for soil Mesostigmata investigation. We also described the soil profile on each plot and collected soil and litter samples to measure pH, litter thickness, soil organic matter, bulk density, soil moisture, soil organic carbon, and elements content. Our study revealed that 16 out of 30 environmental parameters differed between habitat types. A total of 1355 mites were classified into 58 taxa (50 species and 8 genera). The most numerous species were Veigaia nemorensis (165 ind.; 12.2% of all mesostigmatid mites), Zercon peltatus (156; 11.5%), and Paragamasus conus (141; 10.4%). The highest abundance was recorded in birch stands on forest land, whereas the lowest abundance for oak stands growing on post‐agricultural land. Interestingly, in oak stands we recorded both the highest diversity of mite communities (forest land) and the lowest on post‐agricultural land. Furthermore, our study showed that post‐agricultural land and Na content in forest litter affected the abundance, species richness, and diversity of mesostigmatid mite communities. Species richness was additionally affected by tree species, that is, pine and oak. Our research indicated that long‐term agricultural practice negatively affected the density, species richness, and diversity of Mesostigmata communities 20 years after afforestation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3