AG‐SDM: Aquascape generation based on stable diffusion model with low‐rank adaptation

Author:

Zhang Muyang12ORCID,Yang Jinming12ORCID,Xian Yuewei3ORCID,Li Wei12ORCID,Gu Jiaming12ORCID,Meng Weiliang12ORCID,Zhang Jiguang12ORCID,Zhang Xiaopeng12ORCID

Affiliation:

1. School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China

2. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation Chinese Academy of Sciences Beijing China

3. College of Aerospace Technology and Engineering National University of Defense Technology Changsha China

Abstract

AbstractAs an amalgamation of landscape design and ichthyology, aquascape endeavors to create visually captivating aquatic environments imbued with artistic allure. Traditional methodologies in aquascape, governed by rigid principles such as composition and color coordination, may inadvertently curtail the aesthetic potential of the landscapes. In this paper, we propose Aquascape Generation based on Stable Diffusion Models (AG‐SDM), prioritizing aesthetic principles and color coordination to offer guiding principles for real artists in Aquascape creation. We meticulously curated and annotated three aquascape datasets with varying aspect ratios to accommodate diverse landscape design requirements regarding dimensions and proportions. Leveraging the Fréchet Inception Distance (FID) metric, we trained AGFID for quality assessment. Extensive experiments validate that our AG‐SDM excels in generating hyper‐realistic underwater landscape images, closely resembling real flora, and achieves state‐of‐the‐art performance in aquascape image generation.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Reference25 articles.

1. Art and science of aquascaping;Kumari K;Pharma Innov J,2021

2. Denoising diffusion probabilistic models;Ho J;Adv Neural Inform Process Syst,2020

3. High-Resolution Image Synthesis with Latent Diffusion Models

4. HuEJ ShenY WallisP Allen‐zhuZ LiY WangS et al. LoRA: low‐rank adaptation of large language models. In:Proceedings of the 8th International Conference on Learning Representations (ICLR) Addis Ababa Ethiopia.2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3