Biogeochemistry of low‐ and high‐centered ice‐wedge polygons in wetlands in Svalbard

Author:

Jones Eleanor L.12ORCID,Hodson Andrew J.13,Redeker Kelly R.4,Christiansen Hanne H.5,Thornton Steve F.6,Rogers Jade6

Affiliation:

1. Department of Arctic Geology The University Centre in Svalbard Longyearbyen Norway

2. Department of Geography The University of Sheffield Sheffield UK

3. Department of Environmental Sciences Western Norway University of Applied Sciences Sogndal Norway

4. Department of Biology University of York York UK

5. Department of Arctic Geophysics The University Centre in Svalbard Longyearbyen Norway

6. Department of Civil and Structural Engineering The University of Sheffield Sheffield UK

Abstract

AbstractArctic wetlands are a globally significant store of soil organic carbon. They are often characterized by ice‐wedge polygons, which are diagnostic of lowland permafrost, and which greatly influence wetland hydrology and biogeochemistry during summer. The degradation of ice‐wedge polygons, which can occur in response to climate change or local disturbance, has poorly understood consequences for biogeochemical processes. We therefore used geochemical analyses from the active layer and top permafrost to identify and compare the dominant biogeochemical processes in high‐centered (degraded) and low‐centered (pristine) polygons situated in the raised beach sediments and valley‐infill sediments of Adventdalen, Central Svalbard. We found similar organic‐rich sediments in both cases (up to 38 dry wt.%), but while low‐centered polygons were water‐saturated, their high‐centered counterparts had a relatively dry active layer. Consequently, low‐centered polygons showed evidence of iron and sulfate reduction leading to the precipitation of pyrite and siderite, whilst the high‐centered polygons demonstrated more oxidizing conditions, with decreased iron oxidation and low preservation of iron and sulfate reduction products in the sediments. This study thus demonstrates the profound effect of ice‐wedge polygon degradation on the redox chemistry of the host sediment and porewater, namely more oxidizing conditions, a decrease in iron reduction, and a decrease in the preservation of iron and sulfate reduction products.

Funder

Norges Forskningsråd

Publisher

Wiley

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3