The unpredictable resorption of bioresorbable scaffolds—A tale of two ABSORBs

Author:

Pradhan Akshyaya1,Roy Shubhajeet2,Bhandari Monika1,Vishwakarma Pravesh1,Perrone Marco Alfonso3,Sethi Rishi1,Hasibuzzaman Md. Al45ORCID

Affiliation:

1. Department of Cardiology, Lari Cardiology Centre King George's Medical University Lucknow India

2. Gandhi Memorial and Associated Hospitals, King George's Medical University Lucknow India

3. Department of Cardiology and CardioLab University of Rome Tor Vergata Rome Italy

4. Institute of Nutrition and Food Science, University of Dhaka Dhaka Bangladesh

5. The First Affiliated Hospital of Ningbo University Ningbo Zhejiang China

Abstract

AbstractBioresorbable stents represent a revolutionary treatment for coronary artery disease. Such a device offers the prospect for complete naturalization of artery lumen after strut resorption and restoration of vasomotion while curtailing the duration of dual anti‐platelet therapy. The prototype bioresorbable scaffold (BRS—ABSORB GT1) demonstrated good feasibility and safety in the initial studies compared to metallic drug eluting stent but later fell out of favor due to multiple report of stent thrombosis and target lesion failure. Unpredictable resorption of struts turned out to be one of the “Achilles heel” of the BRS and stent strut were still visible in vessel on optical coherence tomography (OCT) at 3 years. We report a case of differential resorption of two ABSORB BRS implanted simultaneously in the same patient by the same operator. Follow up coronary angiogram revealed only minimal plaques on right coronary artery (RCA) and left anterior descending artery (LAD). The BRS were identified on cine‐angiogram by their radio‐opaque markers at both ends. The OCT run in LAD artery revealed “ghost remnants” of BRS struts in LAD, whereas the RCA BRS had completely healed with minimal “ghost” struts. The ghost remnants of BRS resembled the original “Check box” appearance on OCT during the index implantation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3