Dust drift during mechanical and pneumatic wheat sowing and insights into the physicochemical characteristics of the abraded dust

Author:

Godaert Reinout1,Zwertvaegher Ingrid1ORCID,Hornetz Simon2,Verboven Pieter3ORCID,Nuyttens David1ORCID

Affiliation:

1. Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit Merelbeke Belgium

2. SGS Institut Fresenius Gmbh Taunusstein Germany

3. BIOSYST‐MeBioS, KU Leuven Leuven Belgium

Abstract

AbstractBACKGROUNDDuring sowing, plant protection products (PPP)‐laden dust particles can be abraded from coated seeds and emitted into the atmosphere. Drift of these particles is a very complex phenomenon and depends on many factors, including the physicochemical characteristics of the dust. Currently, the available data needed to obtain a better understanding of the phenomenon and to build a risk assessment tool remain very limited. In this study, new data on dust drift and on the physochemical characteristics of dust abraded from wheat seeds generated using a pneumatic and a mechanical seeder were obtained. These data will serve as input to optimize a much‐needed computational fluid dynamics (CFD) model.RESULTSThe dust generated by the pneumatic seeder contained a greater volume of smaller particles (<150 μm) than the mechanical seeder dust, which contained a greater volume of larger particles (>1000 μm) than pneumatic seeder dust. Compared to the pneumatic seeder, the mechanical seeder showed lower drift values. With both seeders, the drift depositions decreased with increasing distance from the sowing area but no clear relationship between dust drift and wind speed could be found.CONCLUSIONThe gathered physicochemical and drift data for wheat seed drilling extend the current dust drift database, and help to better understand the complex dust drift phenomenon. These data will serve as input to refine and validate a CFD dust drift model. Such a model will allow a better and quicker assessment of different scenarios (e.g. varying wind speeds and direction, treatment, drilling technique) at a lower cost than conducting more field trials. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3