Study on the smoke evolution mechanism of a subway tunnel with a multi‐door carriage fire under longitudinal ventilation

Author:

Wu Zhenkun12ORCID,Peng Min123ORCID,Zhou Yun12,Zhu Guoqing12

Affiliation:

1. School of Safety Engineering China University of Mining and Technology Xuzhou China

2. Jiangsu Key Laboratory of Fire Protection of Urban Underground Space Xuzhou China

3. State Key Laboratory of Fire Science University of Science and Technology of China Hefei PR China

Abstract

AbstractThis paper has analyzed the longitudinal ventilation on the effect of the efficiency of the smoke evolution mechanism in a metro tunnel of multi‐window carriage fires. These were simulated by Large Eddy Simulation (LES) with Fire Dynamics Simulator (FDS). In the past, analyses of smoke temperature under the tunnel ceiling and smoke overflow characteristics have been conducted. However, longitudinal ventilation has a different impact on temperature than natural ventilation, especially in a subway tunnel with a multi‐door carriage fire. Consequently, several simulations were run in a subway tunnel (360‐m long, 6.0‐m wide, and 4.8‐m high). The longitudinal ventilation velocity is set by 0–10 m/s with the heat release rate of 1–10 MW. The results show that there is a linear relationship between the maximum temperature and the longitudinal ventilation velocity. An empirical model considering various longitudinal ventilation velocities was developed to predict the maximum smoke temperature underneath the subway tunnel ceiling. The effects of the longitudinal ventilation velocity, the heat release rate, and the distance of the fire source on the characteristics of longitudinal temperature distribution were analyzed. What's more, smoke overflow characteristics under different longitudinal ventilation velocities have been described. The findings and results can also provide a reference for the fire risk assessment of a metro tunnel of multi‐window carriage fires.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Provincial Department of Science and Technology

Publisher

Wiley

Subject

Metals and Alloys,Polymers and Plastics,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3