Affiliation:
1. School of Safety Engineering China University of Mining and Technology Xuzhou China
2. Jiangsu Key Laboratory of Fire Protection of Urban Underground Space Xuzhou China
3. State Key Laboratory of Fire Science University of Science and Technology of China Hefei PR China
Abstract
AbstractThis paper has analyzed the longitudinal ventilation on the effect of the efficiency of the smoke evolution mechanism in a metro tunnel of multi‐window carriage fires. These were simulated by Large Eddy Simulation (LES) with Fire Dynamics Simulator (FDS). In the past, analyses of smoke temperature under the tunnel ceiling and smoke overflow characteristics have been conducted. However, longitudinal ventilation has a different impact on temperature than natural ventilation, especially in a subway tunnel with a multi‐door carriage fire. Consequently, several simulations were run in a subway tunnel (360‐m long, 6.0‐m wide, and 4.8‐m high). The longitudinal ventilation velocity is set by 0–10 m/s with the heat release rate of 1–10 MW. The results show that there is a linear relationship between the maximum temperature and the longitudinal ventilation velocity. An empirical model considering various longitudinal ventilation velocities was developed to predict the maximum smoke temperature underneath the subway tunnel ceiling. The effects of the longitudinal ventilation velocity, the heat release rate, and the distance of the fire source on the characteristics of longitudinal temperature distribution were analyzed. What's more, smoke overflow characteristics under different longitudinal ventilation velocities have been described. The findings and results can also provide a reference for the fire risk assessment of a metro tunnel of multi‐window carriage fires.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Jiangsu Provincial Department of Science and Technology
Subject
Metals and Alloys,Polymers and Plastics,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials