Evolution of megadrought and pluvial events in the Qaidam Basin and Hexi Corridor, Northwest China, during the period 455–2100 CE

Author:

Xu Henian12,Wang Jianglin1ORCID,Liu Jingjing1,Peng Xiaomei1,Pourtahmasi Kambiz3

Affiliation:

1. Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences Lanzhou China

2. University of Chinese Academy of Sciences Beijing China

3. Department of Wood and Paper Science and Technology, Faculty of Natural Resources University of Tehran Tehran Iran

Abstract

AbstractMillennium‐long hydroclimate reconstructions in the Qaidam Basin (QB) and Hexi Corridor (HXC) suggest markedly differing moisture change trends between the two regions in the 20th century; however, it remains unclear whether these current moisture states are exceptional in a long‐term context, and how megadrought and pluvial events have evolved in these regions. Here, we used previously published historical hydroclimate reconstructions combined with model‐based future moisture simulations to assess past, current and future hydroclimate anomalies in a long‐term context (i.e., 455–2100 CE), and investigate the evolution of megadrought and pluvial events. Compared with the QB, moisture variability in the HXC was higher and more prone to the occurrence of severe and long‐lasting megadrought and pluvial events. Megadroughts in the QB mainly occurred in the Little Ice Age (1200–1800 CE) accompanied by lower temperatures, whereas in the HXC, megadroughts mostly occurred during the Medieval Climate Anomaly (800–1200 CE) accompanied by higher temperatures. The Significant Zero crossing of derivatives (SiZer) and Time of Emergence (TOE) analyses were used to reveal the initiation of recent humidity changes and the duration above the natural variability threshold. We found that the QB has experienced a significant wetting trend since the middle of the 20th century, with this trend exceeding the range of natural hydroclimate variability in 1975 CE. The HXC became drier from the early 20th century, but has become wetter since the late 20th century; this trend may exceed the natural hydroclimate variability range by 2032 CE. We also found that the duration and severity of megadrought and pluvial events are positively correlated in each region. Given the higher past hydrological variability in the HXC compared with the QB, our study implies that future extreme hydrological events are more likely to occur in the former of these two regions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3