Correlations of mixed convection in a double lid‐driven shallow rectangular cavity: The case of non‐Newtonian power‐law fluids

Author:

Louaraychi A.1,Lamsaadi M.2

Affiliation:

1. Faculty of Sciences and Technologies, Laboratory of Energy and Materials Engineering (LEME) Sultan Moulay Slimane University Beni‐Mellal Morocco

2. Polydisciplinary Faculty, Research Laboratory in Physics and Sciences for Engineers (LRPSI) Sultan Moulay Slimane University Beni‐Mellal Morocco

Abstract

AbstractThis work provides an analytical and numerical assessment, complete with correlations, of mixed convection in a double lid‐driven shallow rectangular enclosure, which confines non‐Newtonian fluids of the Ostwald–de Waele type and which a uniform thermal flux heats. The finite volume method with the SIMPLER algorithm is the numerical method used to solve the governing partial differential equations along with the boundary conditions, where the parallel flow concept is the analytical approach. In the limits of the explored values of the governing parameters of this study, which are the Rayleigh number, the Peclet number, and the behavior index, the results obtained by these approaches appear to be in good harmony. On the basis of the results obtained by these approaches, we established helpful correlating relations between the governing parameters to realize the contribution of mixed convection to heat transfer. This leads to the finding that the ratio Ra/Pe2+n is the mixed convection parameter, which is the key to distinguishing the three convective flow modes. On the basis of this parameter, which allows the transition from one regime to another, it is possible to identify the zones that designate the predominance of natural, forced, and mixed convection. The limits of these latter depend on the behavior index, n, which is diversified from 0.6 to 1.4 to account for shear thinning (0 < n < 1, low apparent viscosity, high fluid flow, and high heat transfer rate), Newtonian (n = 1), and shear thickening (n > 1, high apparent viscosity, slow fluid flow, and low heat transfer rate) fluids. On the other hand, the study presents and interprets the influences of the steering factors on heat transfer and fluid flow.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3