Structure and functional properties of aluminum hydroxide reinforced bamboo‐derived cellulose acetate composite film for biodegradable packaging

Author:

Dong Gaopan12,Yuan Ziheng1,Yuan Zhengqiu3ORCID,Guo Xiujuan1

Affiliation:

1. School of Pharmacy Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University Xinxiang Henan China

2. Xinxiang Key Laboratory of Clinical Psychopharmacology Xinxiang Medical University Xinxiang China

3. School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan China

Abstract

AbstractBiodegradable plastics are gaining popularity as environmentally friendly functional materials. This study focuses on the preparation of aluminum hydroxide (Al(OH)3) reinforced cellulose acetate composite films using a cost‐effective approach. The process involves synthesizing bamboo‐derived cellulose acetate (BDCA), dissolving it in tetrahydrofuran with glycerol as a plasticizer, and incorporating Al(OH)3 particles into the casting solution to reinforce the cellulose acetate film. Analyses on microstructure and characteristics of the films were conducted through various techniques, including scanning electron microscopy (SEM), Fourier transform infrared (FT‐IR) spectroscopy, x‐ray diffraction (XRD), water contact angle measurement, and tensile testing. The results indicate that the Al(OH)3 particles were well‐dispersed in the composite films, leading to a strong interaction with the cellulose acetate matrix. As a result, the prepared composite films exhibited significantly higher tensile strength compared to pure bamboo‐derived cellulose film. Additionally, they demonstrated improved anti‐ultraviolet properties and a lower water vapor transmission rate, despite being more hydrophilic. This method holds significant potential for commercial applications in producing high‐performance cellulose acetate‐based composite films.Highlights Bamboo‐derived cellulose acetate was synthesized through chemical processes. BDCA based composite film reinforced with Al(OH)3 was prepared by casting method. The Al(OH)3 significantly enhance the functional properties of the composite film. Composite films showed good performances for packaging according to the results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3