N‐acetyltransferase 10 facilitates tumorigenesis of diffuse large B‐cell lymphoma by regulating AMPK/mTOR signalling through N4‐acetylcytidine modification of SLC30A9

Author:

Ding Mengfei1,Yu Zhuoya1,Lu Tiange1,Hu Shunfeng1ORCID,Zhou Xiangxiang23,Wang Xin12345ORCID

Affiliation:

1. Department of Hematology, Shandong Provincial Hospital Shandong University Jinan Shandong China

2. Department of Hematology Shandong Provincial Hospital, Affiliated to Shandong First Medical University Jinan Shandong China

3. National Clinical Research Center for Hematologic Diseases the First Affiliated Hospital of Soochow University Suzhou China

4. Taishan Scholars Program of Shandong Province Jinan Shandong China

5. Branch of National Clinical Research Center for Hematologic Diseases Jinan Shandong China

Abstract

BackgroundAccumulating studies suggested that posttranscriptional modifications exert a vital role in the tumorigenesis of diffuse large B‐cell lymphoma (DLBCL). N4‐acetylcytidine (ac4C) modification, catalyzed by the N‐acetyltransferase 10 (NAT10), was a novel type of chemical modification that improves translation efficiency and mRNA stability.MethodsGEO databases and clinical samples were used to explore the expression and clinical value of NAT10 in DLBCL. CRISPER/Cas9‐mediated knockout of NAT10 was performed to determine the biological functions of NAT10 in DLBCL. RNA sequencing, acetylated RNA immunoprecipitation sequencing (acRIP‐seq), LC‐MS/MS, RNA immunoprecipitation (RIP)‐qPCR and RNA stability assays were performed to explore the mechanism by which NAT10 contributed to DLBCL progression.ResultsHere, we demonstrated that NAT10‐mediated ac4C modification regulated the occurrence and progression of DLBCL. Dysregulated N‐acetyltransferases expression was found in DLBCL samples. High expression of NAT10 was associated with poor prognosis of DLBCL patients. Deletion of NAT10 expression inhibited cell proliferation and induced G0/G1 phase arrest. Furthermore, knockout of NAT10 increased the sensitivity of DLBCL cells to ibrutinib. AcRIP‐seq identified solute carrier family 30 member 9 (SLC30A9) as a downstream target of NAT10 in DLBCL. NAT10 regulated the mRNA stability of SLC30A9 in an ac4C‐dependent manner. Genetic silencing of SLC30A9 suppressed DLBCL cell growth via regulating the activation of AMP‐activated protein kinase (AMPK) pathway.ConclusionCollectively, these findings highlighted the essential role of ac4C RNA modification mediated by NAT10 in DLBCL, and provided insights into novel epigenetic‐based therapeutic strategies.

Funder

Key Technology Research and Development Program of Shandong Province

China Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3