Sustainable per‐ and polyfluoroalkyl substances contaminated soil remediation: Evaluating the potential of thermal desorption

Author:

Rassaei Farzad1ORCID

Affiliation:

1. Department of Soil Science, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran

Abstract

AbstractPer‐ and polyfluoroalkyl substances (PFASs) have been extensively utilized in various industries. These artificial compounds pose significant environmental and health concerns as they exhibit persistence in soil over long periods and can migrate through soil and groundwater. One potential method for addressing PFASs toxicity is thermal desorption, although its efficacy in calcareous soil remains understudied. In this experimental investigation, we aimed to evaluate the effectiveness of thermal desorption in removing PFASs from two types of calcareous soil: spiked clay and sandy clay loam soil. PFASs were spiked into soil samples, which were subsequently freeze‐dried and homogenized. The samples underwent thermal desorption, followed by extraction and analysis of remaining PFASs concentrations using UPLC MS/MS. The study examined the impact of different temperatures, times, and soil types on PFASs removal. Results revealed that the removal fraction of PFASs increased with higher temperatures, although the specific effect varied depending on the soil type and the characteristics of the PFASs. Optimal PFASs removal occurred within the temperature range of 350 to 450°C, with a treatment time of 40 to 60 min. ANOVA analysis indicated a significant interaction between temperature and time, highlighting the influence of temperature on PFASs desorption. The correlation coefficient demonstrated a negative relationship between temperature and PFASs removal from the soil sample. This study successfully demonstrated the effectiveness of thermal desorption in removing PFASs from calcareous soils. The findings contribute to the development of effective strategies for mitigating the environmental and health risks associated with PFASs contamination in soil.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3