Hyperpolarized 13C and 31P MRS detects differences in cardiac energetics, metabolism, and function in obesity, and responses following treatment

Author:

Lewis Andrew J. M.12ORCID,Dodd Michael S.13,Sourdon Joevin2ORCID,Lygate Craig A.1,Clarke Kieran2,Neubauer Stefan1,Tyler Damian J.12,Rider Oliver J.12

Affiliation:

1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Oxford UK

2. Department of Physiology, Anatomy and Genetics University of Oxford Oxford UK

3. Centre for Health and Life Sciences Coventry University Coventry UK

Abstract

AbstractObesity is associated with important changes in cardiac energetics and function, and an increased risk of adverse cardiovascular outcomes. Multi‐nuclear MRS and MRI techniques have the potential to provide a comprehensive non‐invasive assessment of cardiac metabolic perturbation in obesity. A rat model of obesity was created by high‐fat diet feeding. This model was characterized using in vivo hyperpolarized [1‐13C]pyruvate and [2‐13C]pyruvate MRS, echocardiography and perfused heart 31P MRS. Two groups of obese rats were subsequently treated with either caloric restriction or the glucagon‐like peptide‐1 analogue/agonist liraglutide, prior to reassessment. The model recapitulated cardiovascular consequences of human obesity, including mild left ventricular hypertrophy, and diastolic, but not systolic, dysfunction. Hyperpolarized 13C and 31P MRS demonstrated that obesity was associated with reduced myocardial pyruvate dehydrogenase flux, altered cardiac tricarboxylic acid (TCA) cycle metabolism, and impaired myocardial energetic status (lower phosphocreatine to adenosine triphosphate ratio and impaired cardiac ΔG~ATP). Both caloric restriction and liraglutide treatment were associated with normalization of metabolic changes, alongside improvement in cardiac diastolic function. In this model of obesity, hyperpolarized 13C and 31P MRS demonstrated abnormalities in cardiac metabolism at multiple levels, including myocardial substrate selection, TCA cycle, and high‐energy phosphorus metabolism. Metabolic changes were linked with impairment of diastolic function and were reversed in concert following either caloric restriction or liraglutide treatment. With hyperpolarized 13C and 31P techniques now available for human use, the findings support a role for multi‐nuclear MRS in the development of new therapies for obesity.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3