Study of composite polymer degradation for high pressure hydrogen vessel by machine learning approach

Author:

Kadri K.1,Kallel A.23ORCID,Guerard G.4,Abdallah A. Ben1,Ballut S.1,Fitoussi J.3,Shirinbayan M.3ORCID

Affiliation:

1. R&D Department Aptiskills Levallois‐Perret France

2. IRT SystemX Palaiseau France

3. Arts et Metiers Institute of Technology, CNAM, CNRS, PIMM, HESAM University Paris France

4. De Vinci Research Center, La Défense Léonard de Vinci Pôle Universitaire Paris France

Abstract

AbstractThe aim of this article is to study the degradation of a composite material under static pressure. The high pressure condition is similar to the one encountered inside hydrogen tanks. Damage modeling was used to evaluate the behavior of hydrogen tanks to high pressure. A practical approach, coupling a finite element method (FEM) simulation and machine learning (ML) algorithm, is suggested. The representative volume element (RVE) was used in association with a choice of a behavior law and a damage law as an input data. Algorithms for ML classification such as K‐nearest neighbors (k‐NN) and a special k‐NN with a dynamic time warping metric were used. The hierarchical clustering through dendrograms visualizations allowed to exhibit the impact of composite parameters in relation to fiber, matrix properties and fiber volume fraction on the strain degradation under external static pressure. Continuing this, the optimum RVE which shows a low degradation value will be exhibited.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3