An adventurous journey toward and away from fern apomixis: Insights from genome size and spore abortion patterns

Author:

Ekrt Libor1ORCID,Férová Alžběta1,Koutecký Petr1ORCID,Vejvodová Kateřina1ORCID,Hori Kiyotaka2,Hornych Ondřej1ORCID

Affiliation:

1. Department of Botany, Faculty of Science University of South Bohemia Branišovská 1760 České Budějovice CZ‐37005 Czech Republic

2. The Kochi Prefectural Makino Botanical Garden Godaisan 4200‐6 Kochi 781‐8125 Japan

Abstract

AbstractPremiseApomixis in ferns is relatively common and obligatory. Sterile hybrids may restore fertility via apomixis at a cost of long‐term genetic stagnation. In this study, we outlined apomixis as a possible temporary phase leading to sexuality and analyzed factors relating to transitioning to and away from apomixis, such as unreduced and reduced spore formation in apomict and apo‐sex hybrid ferns.MethodsWe analyzed the genome size of 15 fern species or hybrids (“taxa”) via flow cytometry. The number of reduced and unreduced gametophytes was established as a proxy for viable spore formation of either type. We also calculated the spore abortion ratio (sign of reduced spores) in several taxa, including the apo‐sex hybrid Dryopteris × critica and its 16 apomictically formed offspring.ResultsFour of 15 sampled taxa yielded offspring variable in genome size. Specifically, each variable taxon formed one viable reduced plant among 12–451 sampled gametophytes per taxon. Thus, haploid spore formation in the studied apomicts was very rare but possible. Spore abortion analyses indicated gradually decreasing abortion (haploid spore formation) over time. In Dryopteris × critica, abortion decreased from 93.8% to mean 89.5% in one generation.ConclusionsOur results support apomixis as a transitionary phase toward sexuality. Newly formed apomicts hybridize with sexual relatives and continue to form haploid spores early on. Thus, they may get the genomic content necessary for regular meiosis and restore sexuality. If the missing relative goes extinct, the lineage gets locked into apomixis as may be the case with the Dryopteris affinis complex.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3