Cretaceous and Paleocene fossils reveal an extinct higher clade within Cornales, the dogwood order

Author:

Nguyen Austin T.12ORCID,Atkinson Brian A.12ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology University of Kansas Lawrence 66045 KS USA

2. Biodiversity Institute University of Kansas Lawrence 66045 KS USA

Abstract

AbstractPremiseCharacterization and phylogenetic integration of fossil angiosperms with uncertain affinities is relatively limited, which may obscure the diversity of extinct higher taxa in the flowering plant tree of life. The order Cornales contains a diversity of extinct taxa with uncertain familial affinities that make it an ideal group for studying turnover in angiosperms. Here, we describe a new extinct genus of Cornales unassignable to an extant family and conduct a series of phylogenetic analyses to reconstruct relationships of fossils across the order.MethodsTwo permineralized endocarps were collected from the Cedar District Formation (Campanian, 82–80 Ma) of Sucia Island, State of Washington, United States. Fossils were sectioned with the cellulose acetate peel technique and incorporated into a morphological dataset. To assess the utility of this dataset to accurately place taxa in their respective clades, we used a series of phylogenetic pseudofossilization analyses. We then conducted a total‐evidence analysis and a scaffold‐based approach to determine relationships of fossils.ResultsBased on their unique combination of characters, the fossils represent a new genus, Fenestracarpa washingtonensis gen. nov. et sp. nov. Pseudofossilization analyses indicate that our morphological dataset can be used to accurately recover taxa at the major clade to family level, generally with moderate to high support. The total‐evidence and scaffold‐based analyses recovered Fenestracarpa and other fossil genera in an entirely extinct clade within Cornales.ConclusionsOur findings increase the reported diversity of extinct Cornales and indicate that the order's initial radiation likely included the divergence of an extinct higher clade that endured the end‐Cretaceous Mass extinction but perished during the Cenozoic.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3