The timing of visits by large and small bees differentially affects pollination success in Mimulus ringens

Author:

Mitchell Randall J.1ORCID,Starvaggi Dana2,Fitzgerald Victor3ORCID,Karron Jeffrey D.4ORCID

Affiliation:

1. Department of Biology University of Akron Akron 44325 OH USA

2. Akron Public Schools Akron 44310 OH USA

3. Miami University Oxford 45056 OH USA

4. Department of Biological Sciences University of Wisconsin Milwaukee 53211 WI USA

Abstract

AbstractPremiseCross‐fertilization in most flowering plants is facilitated by mobile animals that transport pollen while foraging for floral rewards. The contributions of different visitors can vary widely, depending on the amount of pollen transferred during a single visit and on the frequency and timing of the visits of each pollinator taxon.MethodsWe used three approaches to measure the pollination value of bees that visit Mimulus ringens: pollinator interviews, field population observations, and caging studies.ResultsThe single‐visit effectiveness of small bees (primarily Halictidae) was only half that of larger bees (primarily Bombus) for pollen delivery and removal. In five field populations, we found substantial temporal and spatial variation in visitation and pollination. In most sites big bees were active before 08:00 hours, and by 10:00–11:00 hours, stigmas were usually fully pollinated and closed, and little pollen remained in anthers. Small bees seldom visited before 10:00 hours. Excluding big bees from plants confirmed that pollination is reduced and delayed in this ecological context.ConclusionsBig bees are the primary pollinators of M. ringens, accounting for at least 75% of seed production. Not only are they more effective per visit, in most situations they also visit before small bees become active. Although small bees are not usually important pollinators of M. ringens, they have the potential to partially replace them as a “fail‐safe” pollinator in contexts where big bees are not abundant. In a world where pollinator abundance is declining, such backup pollinators may be important for maintaining plant reproduction.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3