Spatiotemporally controlled emergence of nanoparticle microvortices under electric field

Author:

Pan Qi1ORCID,Lin Xijian1,Wei Shiyuan23,Su Jinghong45,Zhao Hansen1,Duan Xiaojie23,Hu Guoqing6,He Yan1

Affiliation:

1. Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing China

2. Department of Biomedical Engineering College of Future Technology Peking University Beijing China

3. Academy for Advanced Interdisciplinary Studies Peking University Beijing China

4. The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics Chinese Academy of Sciences Beijing China

5. School of Engineering Science University of Chinese Academy of Sciences Beijing China

6. Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou China

Abstract

AbstractControlled assembly of nanoparticles (NPs) has garnered much interest over the past two decades. Beyond established techniques, new methods utilizing local short‐range or large‐scale long‐range interactions remain to be explored to achieve diverse micro‐ and nanoscale structures. Here, we report the controlled emergence of vortex‐pair arrays within monodispersed gold nanorods by applying a direct current electric field across a pair of sawtooth electrodes. By employing in situ darkfield microscopy and particle collective analysis, we elucidate the mechanism behind the formation and stabilization of the NP vortices, attributing it to the combined effects of the electrode shape, high NP density, and high solution viscosity. We further explore the controllability of the vortex‐pair arrays and obtain multiple complex vortice patterns. Our findings will facilitate the investigation of efficient and controlled dynamic assembly of NPs under external fields and help manufacture next‐generation optoelectronic functional materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3