Analysis of N‐of‐1 trials using Bayesian distributed lag model with autocorrelated errors

Author:

Liao Ziwei1,Qian Min1,Kronish Ian M.2,Cheung Ying Kuen1ORCID

Affiliation:

1. Department of Biostatistics Columbia University New York USA

2. Center for Behavioral Cardiovascular Health Columbia University New York USA

Abstract

An N‐of‐1 trial is a multi‐period crossover trial performed in a single individual, with a primary goal to estimate treatment effect on the individual instead of population‐level mean responses. As in a conventional crossover trial, it is critical to understand carryover effects of the treatment in an N‐of‐1 trial, especially when no washout periods between treatment periods are instituted to reduce trial duration. To deal with this issue in situations where a high volume of measurements are made during the study, we introduce a novel Bayesian distributed lag model that facilitates the estimation of carryover effects, while accounting for temporal correlations using an autoregressive model. Specifically, we propose a prior variance‐covariance structure on the lag coefficients to address collinearity caused by the fact that treatment exposures are typically identical on successive days. A connection between the proposed Bayesian model and penalized regression is noted. Simulation results demonstrate that the proposed model substantially reduces the root mean squared error in the estimation of carryover effects and immediate effects when compared to other existing methods, while being comparable in the estimation of the total effects. We also apply the proposed method to assess the extent of carryover effects of light therapies in relieving depressive symptoms in cancer survivors.

Funder

National Cancer Institute

National Institutes of Health

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3