Some new (p,q)$$ \left(p,q\right) $$‐Hadamard‐type integral inequalities for the generalized m$$ m $$‐preinvex functions

Author:

Kalsoom Humaira1ORCID,Khan Zareen A.2,Agarwal Praveen34

Affiliation:

1. College of Science Nanjing Forestry University Nanjing Jiangsu P. R. China

2. Department of Mathematical Sciences, College of Science Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia

3. Department of Mathematics Anand International College of Engineering India

4. Nonlinear Dynamics Research Center (NDRC) Ajman University Ajman UAE

Abstract

This paper introduces and establishes new Hermite‐Hadamard type inequalities specifically tailored for ‐preinvex functions within the ‐calculus framework. These newly developed inequalities come with accompanying left‐right estimates, which enhance their practical utility. The primary objective of this research is to investigate the properties of ‐differentiable ‐preinvex functions and derive inequalities that extend and generalize existing results in the domain of integral inequalities. The techniques employed in this study hold broader implications, finding relevance in various fields where symmetry is paramount. The findings presented in this paper make a significant contribution to the field of analytic inequalities, offering valuable insights into the behavior and characteristics of ‐preinvex functions. Moreover, the established results demonstrate the wider applicability and generalization of analogous findings from prior literature. The techniques and inequalities introduced herein pave the way for further exploration and research in the realm of integral inequalities.

Publisher

Wiley

Reference34 articles.

1. On a q$$ q $$‐definite integrals;Jackson F. H.;Quart. J. Pure Appl. Math.,1910

2. Quantum integral inequalities on finite intervals;Tariboon J.;J. Inequal. Appl.,2014

3. Quantum calculus on finite intervals and applications to impulsive difference equations

4. Quantum Ostrowski inequalities for q-differentiable convex functions

5. A Comprehensive Treatment of q-Calculus

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3