Medical image segmentation of gastric adenocarcinoma based on dense connection of residuals

Author:

Hu Ying1,Guo Yue1,Xu Xian1,Xie Shipeng1ORCID

Affiliation:

1. College of Communications and Information Engineering Nanjing University of Posts and Telecommunications Nanjing China

Abstract

AbstractBackground and objectiveAccurate segmentation of gastric cancer based on CT images of gastric adenocarcinoma is crucial for physicians to screen gastric diseases, clinical diagnosis, preoperative prediction, and postoperative evaluation plans. To address the issue of the inability of the segmentation algorithm to depict the correct boundaries due to unclear gastric contours in the lesion area and the visible irregular band‐like dense shadow extending to the perigastric region, a 3D medical image segmentation model 3D UNet based on residual dense jumping method is proposed.MethodsIn the method we proposed, Residual Dense Block, which is applied to the image super‐resolution module to remove CT artifacts, and Residual Block in ResNet are further fused. The quality of CT images is improved by Residual Dense Skip Block, which removes banded dense shadows, preserves image details and edge information, captures features, and improves the segmentation performance of gastric adenocarcinoma. The Instance Normalization layer position is modified to select the best result. Different loss functions are also combined in order to obtain the best gastric adenocarcinoma segmentation performance.ResultsWe tested the model on a hospital‐provided gastric adenocarcinoma dataset. The experimental results show that our model outperforms the existing methods in CT gastric adenocarcinoma segmentation, in which the method combining the hybrid loss function of Dice and CE obtains an average dice score of 82.3%, which is improved by 5.3% and 3.8% compared to TransUNet and Hiformer, respectively, and improves the cross‐merge rate to 70.8%, compared to nnFormer, nnUNet by 1% and 0.9%, respectively.ConclusionsThe residual jump connection structure indeed improves segmentation performance. The proposed method has the potential to be used as a screen for gastric diseases and to assist physicians in diagnosis.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3