Total scalp irradiation: A study comparing multiple types of bolus and VMAT optimization techniques

Author:

Davis Tanisha M.12,Luca Kirk2ORCID,Sudmeier Lisa J.2,Buchwald Zachary S.2,Khan Mohammad K.2,Yang Xiaofeng2ORCID,Schreibmann Eduard2,Zhang Jiahan2ORCID,Roper Justin2

Affiliation:

1. Medical Dosimetry Program Southern Illinois University Carbondale Illinois USA

2. Department of Radiation Oncology Emory University Atlanta Georgia USA

Abstract

AbstractPurposeTo investigate bolus design and VMAT optimization settings for total scalp irradiation.MethodsThree silicone bolus designs (flat, hat, and custom) from .decimal were evaluated for adherence to five anthropomorphic head phantoms. Flat bolus was cut from a silicone sheet. Generic hat bolus resembles an elongated swim cap while custom bolus is manufactured by injecting silicone into a 3D printed mold. Bolus placement time was recorded. Air gaps between bolus and scalp were quantified on CT images. The dosimetric effect of air gaps on target coverage was evaluated in a treatment planning study where the scalp was planned to 60 Gy in 30 fractions. A noncoplanar VMAT technique based on gEUD penalties was investigated that explored the full range of gEUD alpha values to determine which settings achieve sufficient target coverage while minimizing brain dose. ANOVA and the t‐test were used to evaluate statistically significant differences (threshold = 0.05).ResultsThe flat bolus took 32 ± 5.9 min to construct and place, which was significantly longer (p < 0.001) compared with 0.67 ± 0.2 min for the generic hat bolus or 0.53 ± 0.10 min for the custom bolus. The air gap volumes were 38 ± 9.3 cc, 32 ± 14 cc, and 17 ± 7.0 cc for the flat, hat, and custom boluses, respectively. While the air gap differences between the flat and custom boluses were significant (p = 0.011), there were no significant dosimetric differences in PTV coverage at V57Gy or V60Gy. In the VMAT optimization study, a gEUD alpha of 2 was found to minimize the mean brain dose.ConclusionsTwo challenging aspects of total scalp irradiation were investigated: bolus design and plan optimization. Results from this study show opportunities to shorten bolus fabrication time during simulation and create high quality treatment plans using a straightforward VMAT template with simple optimization settings.

Funder

Winship Cancer Institute

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3