A deep learning approach to remove contrast from contrast‐enhanced CT for proton dose calculation

Author:

Wang Xu1,Hao Yao2ORCID,Duan Ye1,Yang Deshan3ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science University of Missouri Columbia Missouri USA

2. Department of Radiation Oncology Washington University in St. Louis St. Louis Missouri USA

3. Department of Radiation Oncology Duke University Durham North Carolina USA

Abstract

AbstractPurposeNon‐Contrast Enhanced CT (NCECT) is normally required for proton dose calculation while Contrast Enhanced CT (CECT) is often scanned for tumor and organ delineation. Possible tissue motion between these two CTs raises dosimetry uncertainties, especially for moving tumors in the thorax and abdomen. Here we report a deep‐learning approach to generate NCECT directly from CECT. This method could be useful to avoid the NCECT scan, reduce CT simulation time and imaging dose, and decrease the uncertainties caused by tissue motion between otherwise two different CT scans.MethodsA deep network was developed to convert CECT to NCECT. The network receives a 3D image from CECT images as input and generates a corresponding contrast‐removed NCECT image patch. Abdominal CECT and NCECT image pairs of 20 patients were deformably registered and 8000 image patch pairs extracted from the registered image pairs were utilized to train and test the model. CTs of clinical proton patients and their treatment plans were employed to evaluate the dosimetric impact of using the generated NCECT for proton dose calculation.ResultsOur approach achieved a Cosine Similarity score of 0.988 and an MSE value of 0.002. A quantitative comparison of clinical proton dose plans computed on the CECT and the generated NCECT for five proton patients revealed significant dose differences at the distal of beam paths. V100% of PTV and GTV changed by 3.5% and 5.5%, respectively. The mean HU difference for all five patients between the generated and the scanned NCECTs was ∼4.72, whereas the difference between CECT and the scanned NCECT was ∼64.52, indicating a ∼93% reduction in mean HU difference.ConclusionsA deep learning approach was developed to generate NCECTs from CECTs. This approach could be useful for the proton dose calculation to reduce uncertainties caused by tissue motion between CECT and NCECT.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3