Application of a pyramid pooling Unet model with integrated attention mechanism and Inception module in pancreatic tumor segmentation

Author:

Zhang Zhiwei1,Tian Hui1,Xu Zhenshun1,Bian Yun2,Wu Jie1

Affiliation:

1. School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai China

2. Department of Radiology Changhai Hospital The Navy Military Medical University Shanghai China

Abstract

AbstractBackgroundThe segmentation and recognition of pancreatic tumors are crucial tasks in the diagnosis and treatment of pancreatic diseases. However, due to the relatively small proportion of the pancreas in the abdomen and significant shape and size variations, pancreatic tumor segmentation poses considerable challenges.PurposeTo construct a network model that combines a pyramid pooling module with Inception architecture and SE attention mechanism (PIS‐Unet), and observe its effectiveness in pancreatic tumor images segmentation, thereby providing supportive recommendations for clinical practitioners.Materials and methodsA total of 303 patients with histologically confirmed pancreatic cystic neoplasm (PCN), including serous cystic neoplasm (SCN) and mucinous cystic neoplasm (MCN), from Shanghai Changhai Hospital between March 2011 and November 2021 were included. A total of 1792 T2‐weighted imaging (T2WI) slices were used to build a CNN model. The model employed a pyramid pooling Inception module with a fused attention mechanism. The attention mechanism enhanced the network's focus on local features, while the Inception module and pyramid pooling allowed the network to extract features at different scales and improve the utilization efficiency of global information, thereby effectively enhancing network performance.ResultsUsing three‐fold cross‐validation, the model constructed by us achieved a dice score of 85.49 ± 2.02 for SCN images segmentation, and a dice score of 87.90 ± 4.19 for MCN images segmentation.ConclusionThis study demonstrates that using deep learning networks for the segmentation of PCNs yields favorable results. Applying this network as an aid to physicians in PCN diagnosis shows potential for clinical applications.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3