On the wake deflection of vertical axis wind turbines by pitched blades

Author:

Huang Ming1ORCID,Sciacchitano Andrea1,Ferreira Carlos1

Affiliation:

1. Aerodynamics, Wind Energy, Flight Performance & Propulsion Department, Faculty of Aerospace Engineering Delft University of Technology Delft The Netherlands

Abstract

AbstractWake losses are a critical consideration in wind farm design. The ability to steer and deform wakes can result in increased wind farm power density and reduced energy costs and can be used to optimize wind farm designs. This study investigates the wake deflection of a vertical axis wind turbine (VAWT) experimentally, emphasizing the effect of different load distributions on the wake convection and mixing. A trailing vortex system responsible for the wake topology is hypothesized based on a simplified vorticity equation that describes the relationship between load distribution and its vortex generation; the proposed vorticity system and the resulting wake topology are experimentally validated in the wind tunnel via stereoscopic particle image velocimetry measurements of the flow field at several wake cross‐sections. Variations in load distribution are accomplished by a set of fixed blade pitches. The experimental results not only validate the predicted vorticity system but also highlight the critical role of the streamwise vorticity component in the deflection and deformation of the wake, thus affecting the momentum and energy recoveries. The evaluation of the various loading cases demonstrates the significant effect of the wake deflection on the wind power available to a downwind turbine, even when the distance between the two turbines is only three diameters.

Funder

China Scholarship Council

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3