Affiliation:
1. Chemistry Department Faculty of Science Menoufia University Shebin El-Kom 32511 Egypt
2. Isotope Geology Department Research Sector Nuclear Materials Authority P.O. Box 530 Maadi, Cairo Egypt
Abstract
AbstractThorium harms humans and the environment. Mining can release thorium‐containing waste. This study aims to simplify the production of a novel poly‐adsorbent by mixing pyridine dicarboxylic acid, polyvinyl alcohol, and polyamide and first removing thorium from the solution. Various analytical methods were used to characterize the produced dicarboxylic acid/polyvinyl alcohol/polyamide poly‐adsorbent. The practical conditions on adsorption effectiveness evaluated to pH 3.5, 60 mg poly‐adsorbent, 60 min. Th(IV) uptake for poly‐adsorbent is 107.3 mg/g. The linear and nonlinear uptake for the pseudo‐second‐order is closer to the practical uptake (107.71 mg/g). Hence, the kinetic analysis verified the sorption mechanism. Also, the uptake of linear (107.64 mg/g) and nonlinear (108.63 mg/g) types for the Langmuir isotherm is closer to the practical uptake (107.71 mg/g); thus, the sorption isotherm was suitably utilizing Langmuir modeling. Thermodynamic studies proved that the sorption is spontaneous, exothermic, and random due to the negative ΔG°, negative ΔH°, and positive ΔS° during the thorium adsorption process on poly‐adsorbent. In addition, the regeneration ability of poly‐adsorbent was tested utilizing 1.5 M H2SO4. After six cycles, the poly‐adsorbent showed about 83 % regeneration efficacy. The results confirmed that the dicarboxylic acid/polyvinyl alcohol/polyamide poly‐adsorbent might be effective in removing Th(IV) from the watery solution.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献