Exploring Anticancer Potential: Synthesis and Assessment of the Biological Activity of Novel Synthesized Pyrazinoic Acid Derivatives

Author:

Alizadeh Shaghayegh12,Akhlaghi Shiva23,Mostoufi Azar2,Nosratyan Ali2,Fereidoonnezhad Masood12ORCID

Affiliation:

1. Toxicology Research Center Medical Basic Sciences Research Institute Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

2. Department of Medicinal Chemistry School of Pharmacy Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

3. Department of Biomolecular Science School of Pharmacy University of Mississippi Oxford, MS USA

Abstract

AbstractOne of the most effective approaches to discovering novel drugs for cancer treatment involves the exploration of new synthetic compounds. The pyrazinoic acid or pyrazine‐2‐carboxylic acid (PA)‐derivative compounds can be explored as a new anticancer agent due to their nitrogenous heteroaromatic ring. In this study, ten novels PA derivatives were synthesized by Ugi multicomponent reaction and characterized using IR, NMR, and mass spectroscopy. The cytotoxic activity was assayed in three different cancer cell lines, including colon (HT‐29), lung (A549), and breast (MCF‐7). The U10 was the most potent compound, exhibiting moderate cytotoxicity with IC50 of 8.26 μM, 8.23 μM, and 22.58 μM against HT‐29, A549, and MCF‐7 cell lines, respectively. In addition, the effect of U10 exposure in the MRC‐5 cell line as a non‐tumoral lung cell line showed a selectivity index of 3.76. The apoptotic activity and intracellular ROS level induction of U10 were assayed in MCF‐7 cells. The results demonstrated that apoptosis increases from 23.94 % at 10 μM to 36.8 % at 25 μM. Intracellular ROS level assay showed that U10 was able to significantly increase intracellular ROS by increasing the concentration. Molecular docking was utilized to predict the binding sites and interactions between the synthesized compound and DNA, as well as the Bcl‐2 apoptosis regulator.

Funder

Ahvaz Jundishapur University of Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3