Self‐Healing Polybutadienes Formed through Sigmatropic Rearrangement and Stratified H‐Bonding for Use in Polymer‐Bonded Explosives

Author:

S Gayathri12,Srinivas Chinthalapalli3,KP Vijayalakshmi3,S Bhuvaneswari34,Reshmi Sasidharakurup5ORCID

Affiliation:

1. Polymers and Special Chemical Group Vikram Sarabhai Space Centre Thiruvananthapuram Kerala India

2. Cochin University of Science and Technology Kochi Kerala India

3. Analytical Spectroscopy and Ceramic Group Vikram Sarabhai Space Centre Thiruvananthapuram Kerala India

4. Laboratory for electro-optics systems Bengaluru Karnataka India

5. Quality Division Propellants and Chemicals Vikram Sarabhai Space Centre Thiruvananthapuram 695022 Kerala India

Abstract

AbstractThe accomplishment of self‐healing polybutadienes (PB) is decisive for multitude of aerospace applications. We here present the first‐time report on a self‐healing PB derived from a blend of allyloxy end functionalized PB elicited through intramolecular thermally activated sigmatropic Claisen rearrangement coupled with stratified hydrogen bonding for use in polymer bonded explosives (PBX). Heteronuclear Single Quantum Correlation (HSQC), Heteronuclear Multiple Bond Coherence (HMBC), Total Correlation Spectroscopy (TOCSY) and Fourier Transform Infrared spectroscopy (FTIR) Spectroscopy were utilized to confirm the mechanistic aspects of the rearrangement for the proposed application. The mechanism of self‐healing is further elucidated using density functional theory (DFT) computations and confirmed through Raman spectroscopy. The biphasic polymer network architecture is disclosed through two glass transitions at −54 °C and 15–25 °C, as confirmed by Dynamic Mechanical Analysis (DMA) and Atomic Force Microscopy (AFM). The polymer exhibited healing efficiency of 85 % suitable for adhesive or coating applications. Self‐healing in bonding formulations of insensitive polymer bonded explosives was also expedited which exhibited a healing efficiency of 49–54 %.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3