Novel Coumarin‐Pyrazole‐Thiazoles Hybrids: Synthesis, Anticancer Activity, Molecular Docking and In Silico ADMET prediction Studies

Author:

Alsolimani Ayat K.1,Ali Tarik E.12ORCID,Assiri Mohammed A.12,Shati Ali A.3,Alfaifi Mohammad Y.3,Elbehairi Serag E. I.3

Affiliation:

1. Department of Chemistry Faculty of Science King Khalid University Abha 61421 Saudi Arabia

2. Research Center for Advanced Materials Science King Khalid University Abha Saudi Arabia

3. Department of Biology Faculty of Science King Khalid University Abha 61421 Saudi Arabia

Abstract

AbstractA novel series of coumarin‐pyrazole‐thiazoles hybrids was designed. The methodology depended on a simple condensation reaction of 3‐(2‐oxo‐2H‐chromen‐3‐yl)‐1‐phenyl‐1H‐pyrazole‐4‐carboxaldehyde with a variety of thiazole compounds having amino or active methylene groups. In addition, another series of 1‐(thiazol‐2‐yl)‐3‐(2‐oxo‐2H‐chromen‐3‐yl)‐1H‐pyrazole‐4‐carboxaldehydes was also achieved by applying Vilsmeier‐Haack formylation on 3‐[1‐(2‐(thiazol‐2‐yl)hydrazineylidene]ethyl)‐2H‐chromen‐2‐ones. The obtained products were verified by spectral techniques such as IR, NMR, and mass spectra. To screen their abilities to inhibit cancer cell growth, these compounds were investigated against three tumor cell lines (MCF‐7, HepG2, and HCT116) using a standard method called SRB. The products 3e, 7b, 12c and 14a have considerable cytotoxic effects comparable to Doxorubicin. These products caused significant cell death by late apoptosis in all tumor cell lines. Furthermore, they preferentially induced G2 cell cycle arrest in MCF‐7 and HepG2 cells, while causing G1 cell cycle arrest in HCT116 cells. The molecular docking of these bioactive products showed good binding affinities with Cyclin‐dependent kinase 8 (CDK‐8). The ADMET‐predicted drug‐likeness properties of these bioactive compounds enable them to can used as promising anticancer agents.

Funder

King Khalid University

Publisher

Wiley

Reference62 articles.

1. Cancer statistics, 2023

2. Cancer Statistics, 2021

3. Cancer IAR World Cancer Report 2020 WHO Sydney Australia 2020. Available from:https://www.iarc.who.int/wp-content/uploads/2020/02/QA_WCR2020.pdf.

4. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3