QM/MM Studies on Enzyme Catalysis and Insight into Designing of New Inhibitors by ONIOM Approach: Recent Update

Author:

Sharma Himani1,Raju Baddipadige1,Narendra Gera1,Motiwale Mohit1,Sharma Bhavna1,Verma Himanshu1,Silakari Om1ORCID

Affiliation:

1. Molecular Modeling Lab (MML) Department of Pharmaceutical Sciences and Drug Research Punjabi University Patiala Punjab 147002 India

Abstract

AbstractComputational enzymology is a rapidly developing area that uniquely provides deep insight into the fundamental processes of biological catalysis at the atomic level. Such in‐depth insight can ultimately be employed in designing potential inhibitors against the targets of interest. Computational enzymology covers a wide range of in‐silico approaches for investigating the enzyme‐catalyzed reaction mechanisms, among which combined quantum mechanics (QM) /molecular mechanics (MM) approaches have gained a lot of attention nowadays. This advanced approach generally involves a QM method (i. e. a method that estimates the electronic structure of the active site) and a simpler MM method (a method that includes the enzyme environment) to understand the enzymatic reactions. The QM/MM method has been widely tested in understanding the molecular mechanisms both at the structural and energetic levels and observed to best correlate with experimental studies of the enzymatic mechanism. It proposes a new mechanism that ultimately opens a new route for designing new potent, efficacious enzyme inhibitors. This review mainly covers wide applications of the ONIOM (Our own N‐layer Integrated molecular Orbital Molecular mechanics) method for decoding the enzymatic catalysis mechanism or designing potential small molecule inhibitors as treatment therapeutics in terms of free energy profiles. Moreover, this article also highlights employing QM/MM method in comprehending the mechanisms for drug metabolism and resistance (owing to mutations). This write‐up may encourage medicinal chemists and molecular biologists to explore this approach to propose more promising therapeutics to improve the quality of treatment.

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3