Polyvinyl Alcohol‐Conjugated L‐Cysteine: A Novel Metal Pincer for Efficient Heavy Metal Ions Removal from Wastewater

Author:

Mahmoud Safwat A.1,Atia Bahig M.2ORCID,Abdalla Mohamed2

Affiliation:

1. Physics Department Faculty of Science Northern Border University Arar 13211 Saudi Arabia

2. Geology Isotopes Dept. Research Sector Nuclear Materials Authority P.O. Bh<tabox: 530 El-Maadi, 11728 Cairo Egypt

Abstract

AbstractA facilely prepared composite based on Polyvinyl alcohol anchored‐ L‐cysteine (PVA‐L‐CYS) demonstrated efficient functionality in the elimination of heavy metals (Hg, Cr, Pb, and Cd) from working wastewater. The synthesis of the composite was validated through a comprehensive characterization utilizing various analytical techniques to ensure the composite‘s structural, chemical, and physical properties. At ambient temperature, pH of 4–5.5, interaction time of 15–20 minutes, and concentration of 200 mg/L metal ions, the composite exhibited a maximum retention capacity of 48.5, 25, 45.25, and 44.25 mg/g for Hg, Cr, Pb, and Cd, respectively. Langmuir modeling was establish to be more fitting to the practical results than Freundlich, providing theoretical values of 49.02, 25.97, 46.08, and 44.84 mg/g for Hg, Cr, Pb, and Cd, respectively. The kinetics of PVA‐L‐CYS composite was accurately predicted by model of the pseudo‐first‐order kinetic. Thermodynamic prospects indicated a spontaneous, exothermic, and favorable uptake process at low temperatures. Efficient elution of the heavy metal ions from the overloaded composite was performed using 1 M HNO3. In accordance with WHO and FAO guidelines, the successful elimination of working metal ions from wastewater utilizing the PVA‐L‐CYS composite was demonstrated in a single cycle before discharge into the marine environment.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3