Production of hydrogen via water oxidation using mesoporous‐assembled SiO2@TiN nanocomposite electrocatalyst

Author:

Alothman Asma A.1,Shah Syed Imran Abbas2,Abid Abdul Ghafoor2,Nisa Mehar Un2,Bibi Nasreen3,Jabbour Karam4,Anwar Muhammad Imran5,Ehsan Muhammad Fahad6,Manzoor Sumaira2ORCID

Affiliation:

1. Department of Chemistry College of Science King Saud University Riyadh 11451 Saudi Arabia

2. Institute of Chemical Sciences Bahauddin Zakariya University Multan 60800 Pakistan

3. Department of Chemistry Quaid-i-Azam University Islamabad 45320 Pakistan

4. College of Engineering and Technology American University of the Middle East Kuwait

5. Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 Henan PR China

6. Department of Civil and Environmental Engineering Northeastern University Boston 02115 MA USA

Abstract

AbstractElectrochemical water splitting is one of the promising approaches for the production of molecular hydrogen as well as to meet the clean and sustainable energy demand of the modern world. However, the key task for the research communities is to design a cost‐effective and efficient electrocatalyst to contribute positively to recent world crises. This study presents a novel SiO2@TiN nanocomposite and utilize it for oxygen evolution reaction (OER) as an electrocatalysts. The different techniques use for the characterization of SiO2@TiN nanocomposite. The electrochemical investigations encompass linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) which collectively yield critical parameters for assessing electrocatalytic performance. At a current density of 10 mAcm−2 the SiO2@TiN nanocomposite has a substantially lower overpotential of 256 mV compared to pure SiO2 and TiN. The composite also shows smaller tafel slope of 40 mV dec−1 as well as lower overpotential. The SiO2@TiN nanocomposite also demonstrates the enhanced redox activity as a result of its synergistic effect. Consequently, the increased electrical conductivity of TiN facilitates the attachment of metal oxides and more active sites are exposed to improve the OER activity of the fabricated materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3