Affiliation:
1. Energy Materials Laboratory Physics Department School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
2. Eman A. Khalil Prof. Ahmed Abdellatif Biology Department School of Sciences and Engineering The American University in Cairo New Cairo 11835 Egypt
3. Biomaterials Department Faculty of Dentistry Cairo University Cairo Egypt
4. Biomaterials Department Faculty of Oral and Dental Medicine Egyptian Russian University (ERU) Cairo Egypt
Abstract
AbstractPumpkin seed oil was combined with polyvinyl alcohol (PVA) and chitosan (CS) to develop novel electrospun nanofibers that can serve as wound scaffolds. The main objective of this work is to evaluate the safety, drug release, and performance of these scaffolds for dermal and oral wound healing. The scaffolds were characterized using a field scanning electron microscope (FSEM), and Fourier transform infrared spectroscopy (FTIR). A series of tests were conducted, including the degree of swelling and degradation, in vitro drug release, antibacterial activity, and cytotoxicity in human dermal fibroblasts adult (HDFa). Wound healing activity in an excisional dermal and incisional oral wound's rat model was evaluated after 10 days. Antibacterial tests of the Pumpkin loaded CS/PVA nanofibers showed significant antibacterial activity against S. aureus and E. coli compared to negative controls. In vivo dermal wound healing showed that all treatment groups enhanced wound healing, as demonstrated by the increased wound closure percentages compared to negative control groups on 3, 5, and 10 days. Compared to other treatment groups, pumpkin‐loaded CS/PVA nanofibers significantly enhanced healing on 7 and 10 days, however, healing was delayed afterward. In oral wound healing, the qualitative Hematoxylin and Eosin (H−E) histological examination of the oral wounds treated with pumpkin‐loaded scaffolds showed an enhanced healing rate with healthy architecture compared to the wounds treated with unloaded scaffolds or untreated wounds. These results indicate that Pumpkin loaded nanofibers are promising for both dermal and oral wound healing. They offer a new safe and cheap alternative to the commercial treatments that are used for wound healing. The results also highlight the combination of using natural botanical compounds and emerging nanoscience for biomedical applications, primarily wound healing.
Funder
American University in Cairo
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献