Novel Red‐Emitting Gd3BW1‐xMoxO9 : Eu3+ Phosphor with High Thermal Stability for Application in UV‐Excited WLEDs and Rapid Visualization of Latent Fingerprints

Author:

Zhang Yang1ORCID,Ci Yu1,Song Jianqiao1,Tong Dexin1,Song Jian1,Zhang Enwei1,Wan Hongnan1,Ma Zisong1

Affiliation:

1. Department of Criminal Science and technology Liaoning Police College Dalian 116036 P. R. China

Abstract

AbstractRare‐earth‐doped inorganic luminescent materials are widely used in white light‐emitting diodes (WLEDs), lasers and forensic sciences due to their outstanding optical characteristics. However, it is still a challenge to obtain such materials with better thermal stability for application in WLEDs on account of their serious thermal quenching properties. In addition, there is still room for improvement in some respects such as higher sensitivity and contrast for application in latent fingerprint development. Herein, a series of novel Gd3BW1‐xMoxO9 : Eu3+ phosphors have been synthesized via high‐temperature solid‐state reaction process. Compared with different Mo6+ ions doping concentrations, Gd3BW0.7Mo0.3O9 : Eu3+ phosphor has optimal photoluminescence properties. Meanwhile, the emission intensity of Gd3BW0.7Mo0.3O9 : Eu3+ phosphor is over 3 times higher than that of commercial red phosphor. More impressive is its excellent resistance against thermal quenching; when heated up to 150 °C, the Gd3BW0.7Mo0.3O9 : Eu3+ phosphor still preserves about 98 % emission intensity of that at room temperature. Furthermore, the latent fingerprints (LFPs) developed by Gd3BW0.7Mo0.3O9 : Eu3+ phosphor exhibited the excellent visualization on various nonporous substrates, and level 1–3 features were well identified with high contrast and sensitivity. The obtained results suggested that the as‐prepared phosphor has great potential for application in both WLEDs and latent fingerprint detection.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3