Combustion Synthesis of Porous NiCuZn Spinel Ferrite Hierarchies and Their Magnetic Properties

Author:

Chen Chuan1,Qian Sen1,Zhang Qiang1,Zhang Ximin1,Yao Tianhao1ORCID

Affiliation:

1. State Grid Smart Grid Research Institute co.,Ltd. Beijing China 102209

Abstract

AbstractNickel‐copper‐zinc (NiCuZn) spinel ferrites have attracted intensive research owing to their unique magnetic properties and low co‐fire temperature. Combustion synthesis has been viewed as a promising protocol for the large‐scale fabrication of NiCuZn spinel ferrites. However, the spinel ferrites prepared by this method usually suffer from limited saturation magnetization and high coercivity due to their large size, which will impose detrimental harmonics on electrical equipment (e. g., transformer, motor, etc.). To address these issues, highly porous NiCuZn spinel ferrite hierarchies were prepared within several hours through a modified solution combustion method, using glucose and ammonium nitrate as the fuel and combustion enhancer, respectively. The as‐obtained NiCuZn spinel ferrite hierarchies show excellent magnetic properties with a high saturation magnetization up to 62.61 emu/g and a low coercivity of 9.6 Oe thanks to the rational distribution of cations and grain size. More importantly, this method also allows various modifications (heteroatom doping) and large‐scale applications, which may be promising for the fabrication of high‐performance soft magnets for electrical equipment.

Funder

State Grid Corporation of China

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3