Multispectroscopic Studies on HSA Interaction, DFT Calculations, Molecular Docking, and Antimicrobial Activities of Imine‐ Functionalized Tris(hydroxymethyl)aminomethane Derivatives

Author:

Hiremath Kavita B.1ORCID,Shivashankar Murugesh1ORCID,Chandrasekaran Natarajan2ORCID

Affiliation:

1. Department of Chemistry School of Advanced Sciences, VIT Vellore India

2. Centre for Nanobiotechnology Vellore Institute of Technology [VIT-University] Vellore India

Abstract

AbstractFollowing recent work on new Tris hydroxymethyl aminomethane Schiff base derivatives were synthesized and characterized by using NMR (1H, 13C, and depth), FT‐IR, and Mass spectroscopy. The crystal structure of STB has been determined by X‐ray diffraction analysis. The binding interaction of the 3 chemically synthesized molecules with human serum albumin has been examined under the pH=7.40 through UV‐visible absorption and fluorescence spectroscopy analysis. The result obtained from the fluorescence experiment (1014) suggests a static mechanism of quenching. By utilizing fluorescence spectroscopy to determine the binding constant (Kb=106), it was determined which ligands have the highest affinity for HSA and that these ligands had changed the structure of HSA. Through hydrophobic interactions, the ligands bind to HSA on site I (subdomain II), according to thermodynamic parameters like enthalpy change (ΔHo), entropy change (ΔSo), and Gibbs free energy change (ΔGo). The result of 3D fluorescence spectra also showed that albumin conformational changes were brought on by these ligands. The results of the experiments were supported by DFT and molecular docking of ligands with HSA. Escherichia coli, Stap. aureus, Aspergillus niger, and Aspergillus flavus were tested for antimicrobial activity against the synthesized compounds respectively.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3