Enhanced CO2 Methanation over Nickel‐Based Unsupported Catalyst Synthesized by Chemical Precipitation Method

Author:

Kumar Choudhary Abhay1,Yadav Sudeep1,Kumar Gupta Pavan2ORCID

Affiliation:

1. Department of Chemical Engineering Bundelkhand Institute of Engineering & Technology Jhansi Uttar Pradesh 284128 India

2. CSIR – Central Institute of Mining and Fuel Research (Digwadih Campus) Gasification and Catalysis Research Group PO: FRI Dhanbad Jharkhand 828108 India

Abstract

AbstractThis study investigated the catalytic CO2 methanation using nickel oxide (NiO) nanoparticles and nickel oxalate (NiC2O4) as catalysts. The NiC2O4 precursor was synthesized through a chemical precipitation reaction between nickel (II) nitrate hexahydrate (Ni(NO3)2.6H2O) and oxalic acid (H2C2O4.2H2O). Nickel oxide (NiO) nanoparticles were synthesized through thermal decomposition of NiC2O4 precursor at 450 °C in air. The samples were characterized by XRD, FTIR, BET, SEM, and EDX. The XRD and FTIR analyses revealed that the NiO nanoparticles were well‐crystallized having size 17.30 nm. The BET analysis of the NiO sample revealed mesoporous NiO nanoparticles with a specific surface area (SBET) of 29.08 m2/g and a narrow distribution of pore sizes. The catalytic performance of NiO and NiC2O4 catalysts studied for the CO2 methanation in tubular packed bed reactor at 150–550 °C and 1 atm. The reduced NiO nanoparticles exhibited more catalytic activity than the decomposed NiC2O4 catalyst. At 380 °C, 1 atm, and gas hourly space velocity (GHSV) of 9000 mL g−1 h−1, the reduced NiO nanoparticle catalyst showed high catalytic activity, with a maximum CO2 conversion of 85.54 %, 99 % CH4 selectivity, and 84.69 % CH4 yield. Furthermore, the NiO nanoparticle catalyst demonstrated excellent stability after 12 h of streaming at 380 °C.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3