Rational Fabrication of MoS2/g‐C3N4 Heterostructures for Efficient Photocatalytic Degradation of Rhodamine B

Author:

Zhang Kai1,Yuan Hu1,Xu Feng1,Xue Qian1,Zeng Yi12,Qi Xuede1,Li Kun1,Li Qingwu3,Zhang Mingjie4,Hu Xuebu1,Lu Shun2,Jiang Jinxia5,Qi Xueqiang1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing 400054 China

2. Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China

3. CMCU Engineering Company Ltd. Chongqing 400039 China

4. College of Life Sciences Hebei Agricultural University Baoding 071001 China

5. Chongqing Medical and Pharmaceutical College Chongqing 400020 China

Abstract

AbstractMolybdenum disulfide (MoS2) and graphitic carbon nitride (g‐C3N4) heterojunctions were prepared through the hydrothermal method and the calcination method (namely, MoS2/g‐C3N4‐1 and MoS2/g‐C3N4‐2) for the photocatalytic degradation of Rhodamine B. X‐ray diffraction and scanning electron microscopy confirmed the formation of a heterostructure composite between MoS2 and g‐C3N4. The bandgap of MoS2 and g‐C3N4 was studied with ultraviolet–visible diffuse reflection spectroscopy and electrochemical Mott‐Schottky tests. MoS2/g‐C3N4‐1 exhibits remarkable efficiency in degrading Rhodamine B, achieving 91.2 % degradation in 1 h, which is 1.06 times higher than MoS2/g‐C3N4‐2. Additionally, the MoS2/g‐C3N4‐1 heterojunction demonstrates good reusability, maintaining a degradation efficiency of 71.2 % after 5 cycles. The reason lies in that the MoS2/g‐C3N4‐1 possesses a larger specific surface area (33.078 m2g−1) than MoS2/g‐C3N4‐2 (28.621 m2g−1). Free radical quenching experiments indicate that ⋅O2 serves as the primary active species for photocatalytic degradation. The findings indicate that incorporating g‐C3N4 into MoS2 improves its photocatalytic capability due to aligned energy bands, promoting charge transfer, and reducing electron‐hole recombination.

Funder

Natural Science Foundation of Chongqing Municipality

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3