Hydration of MgO, CaO, SrO, and BaO (001) Surfaces from First Principles

Author:

Maleki Farahnaz1ORCID,Inico Elisabetta1,Di Liberto Giovanni1ORCID

Affiliation:

1. Department of Materials Science University of Milano-Bicocca Via Cozzi 55 20125 Milano Italy

Abstract

AbstractIn this work we present a computational study of alkaline earth oxides (001) surfaces interfaced with water by means of density functional theory (DFT) in conjunction with ab initio molecular dynamics (AIMD) calculations. We studied the nature of MgO, CaO, SrO, and BaO (001) surfaces in contact with water. Results show that water dissociation is promoted as the alkaline earth metal becomes heavier. Similarly, the coordination number of the cation atoms with water molecules follows the same trend, indicating a more favorable interaction. The combined analysis of rumpling and pair distribution functions allows to provide a correspondence between reactivity of atoms on the surface and capability to coordinate water molecules. Except for MgO, the remaining surfaces display strong structural changes upon hydration, a relevant message when modelling hydrated surfaces. We also investigated the effect of the water thickness by adsorbing a water monolayer and bilayer to the surface. The findings of the study and the adopted approach could be of help for future studies of more complex systems or to provide fundamental rationalizations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3