Oil‐Water Separation Performance and Thermoregeneration of a Nanofibrous SiO2 Membrane Prepared by Sol‐Electrospinning

Author:

Meng Haitao1ORCID,Pan Xuecong1ORCID,Li Xuemei1,Meng Haijun1,Li Shouzhu1

Affiliation:

1. Department Xinjiang Inorganic Nanofiber Materials and Application Laboratory School of Energy and Chemical Engineering Xinjiang Institute of Technology 843100 Aksu P. R. China

Abstract

AbstractThe discharge of oily wastewater seriously affects human health and the sustainable development of the ecological environment. Therefore, developing oil‐water separation materials capable of removing organic pollutants is imperative. In this study, we report the preparation of a SiO2 nanofiber membrane based on tetraethyl orthosilicate (TEOS) using a template‐free strategy combined with electrostatic spinning technology. The prepared SiO2 nanofiber membrane was characterized using SEM, EDX, FT‐IR, AFM, XRD, CA, and TG techniques. The prepared SiO2 nanofiber membranes exhibit excellent hydrophilicity (WCA=0°) in air and oleophobicity (UWOCA=136°) underwater, with excellent anti‐pollution properties for gravity‐driven oil‐water separation. The SiO2 nanofiber membrane can effectively separate different kinds of oil‐water mixtures with high water flux (4420 L m−2 h−1) and excellent separation efficiency (99.1 %), with a flux loss of 5.65 % after ten cycles, indicating excellent cycling stability. In addition, it can also be used to separate various oil‐in‐water emulsions stabilized by surfactants with a separation flux higher than 2079 L m−2 h−1 and a separation efficiency maintained at more than 97 %. During the separation of 150 mL lotion, the membrane was seriously scaled due to long‐term pollution. Simple water washing could not restore the membrane flux, and the irreversible scaling rate was 50.74 %, which seriously affected the continuous separation. However, due to the excellent thermal stability of SiO2 nanofiber membranes, oil contaminated membranes can be heated and regenerated, resulting in a flux recovery rate of nearly 100 %. Overall, this material has a wide range of potential applications in environmental protection, especially in the treatment of oily wastewater, due to its simple fabrication method, high flux, and superb oil resistance and recyclability.

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3