Design, Synthesis, Cytotoxic Evaluation, and Molecular Docking of New Alkyl Triphenylphosphonium Curcumin Derivatives

Author:

Hoang Dang Phu123ORCID,Hoai Tran Tu123,Huu Le Tho123,Thi Nguyen Thu‐Ha42,Binh Vong Long42,Thanh Thi Nguyen Mai123,Trung Nguyen Nhan123

Affiliation:

1. Faculty of Chemistry University of Science 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City Vietnam

2. Vietnam National University Ho Chi Minh City Linh Trung Ward Thu Duc City Ho Chi Minh City Vietnam

3. Research Lab for Drug Discovery and Development University of Science 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City Vietnam

4. School of Biomedical Engineering International University Quarter 6, Linh Trung Ward Thu Duc City Ho Chi Minh City Vietnam

Abstract

AbstractDespite the previous anticancer effects of curcumin against various cancer cell lines, in vitro, pre–clinical, and clinical studies have faced constraints, particularly at high doses. Therefore, the mitochondria–targeted approach represents a promising trend in cancer drug development. This study successfully synthesized three new alkyl triphenylphosphonium ester curcumin derivatives (13) with good yield. They demonstrated cytotoxicity against MCF‐7 cells with IC50 values of 49.72, 62.57, and 91.73 μM, respectively. These values indicated higher potency than free curcumin (IC50>100 μM). Molecular docking studies of curcumin and three derivatives 13 with two estrogen receptor α (ERα) ligand binding domains, 3ERT (antagonist recognition and antiproliferative function), and 1GWR (agonist recognition and pro–proliferative function), were carried out. These domains are important targets in hormone–dependent anticancer strategies. The favourable docking scores and key residue interactions suggested that these derivatives could be the potential antagonists. Three synthesized alkyl–TPP+ curcumin ester derivatives (13) demonstrated more potent cytotoxic efficacy than curcumin, particularly against the human MCF‐7 breast cancer cell line. In addition, molecular docking studies suggested their potential as antagonists of ERα. The in silico ADMET data of three derivatives (13) showed compliance with the Lipinski rule and demonstrated their absorption, distribution, metabolism, and excretion properties.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3