Highly Porous Carbon Materials Prepared Through KOH‐Assisted CO2‐Activation of Carbonized Waste Tires for Removal of Cr(VI) and Cd(II) from Water

Author:

Ahi Zeinab1,Roshanravan Bita1,Younesi Habibollah1ORCID,Bahramifar Nader1

Affiliation:

1. Department of Environmental Science Faculty of Natural Resources Tarbiat Modares University P.O. Box 46414–356 Nour, Mazandaran Iran

Abstract

AbstractIn this study, waste tires (WTs) were carbonized under an N2 atmosphere. Subsequently, KOH/WTs‐char with KOH‐assisted CO2 activation was used to prepare activated carbon (AC) as a highly porous carbon material for the removal of Cr(VI) and Cd(II) from water. Various techniques such as elemental analysis, Fourier‐transform infrared spectroscopy, scanning electron microscopy, and N2 adsorption/desorption were employed to investigate the physical and chemical characteristics of the prepared carbons. The WTs‐char activated with KOH under CO2 exhibited a microstructure with a high BET surface area and pore volume of 1841 m2/g and 0.869 cm3/g, respectively, demonstrating excellent adsorbent performance. The maximum removal efficiencies of 99.91 % for Cd(II) and 99.81 % for Cr(VI) were achieved using AC2 carbon under the following conditions: pH 2 for Cr(VI) and pH 5 for Cd(II), contact time of 120 min, adsorbent dose of 0.4 g/100 mL, and temperature of 298 K. The adsorption kinetics followed the pseudo‐second‐order equation, and the equilibrium data fit well with the Redlich–Peterson isotherm equation. The positive values of ▵G indicated that the uptake process for both ions was nonspontaneous and nonfeasible over the temperature studied. Both ions showed negative values of ΔH and ΔS on carbon, suggesting exothermic adsorption and a decrease in disorder. Regeneration studies showed that NaOH was a better desorbing agent than HCl. Cr(VI) desorption resulted in over 90 % removal recovery by AC2 using 1.0 M NaOH even after the fifth cycle. However, the low activation energy indicated that the adsorption was favorable kinetically. Overall, this study demonstrated the effective preparation of highly porous carbon and its successful performance in removing Cr(VI) and Cd(II) ions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3