Organochlorine detection on transition metals (X=Zn, Ti, Ni, Fe, and Cr) anchored fullerenes (C23X)

Author:

Louis Hitler12,Chima Chioma M.12,Amodu Ismail O.13,Gber Terkumbur E.12ORCID,Unimuke Tomsmith O.12,Adeyinka Adedapo S.4

Affiliation:

1. Computational and Bio-Simulation Research Group University of Calabar Calabar Nigeria

2. Department of Pure and Applied Chemistry Faculty of Physical Sciences University of Calabar Calabar Nigeria

3. Department of Mathematics Faculty of Physical Sciences University of Calabar Calabar Nigeria

4. Department of Chemical Sciences University of Johannesburg Johannesburg South Africa

Abstract

AbstractHerein, the Kohn‐Sham K density functional theory (DFT) approach has been employed to investigate the adsorption and sensing efficacy of C23X (X=Zn, Ti, Ni, Fe, and Cr) nanoclusters towards a selected organochlorine derivative (chloronaphthalene). CLN@C23Ti (T1) and CLN@C23Cr (C1) complexes indicated stronger adsorption as confirmed by the adsorption energy values of −68.3384 and −49.3581 Kcal/mol. Also, higher change in charge transfers of −1.7134 and −1.0414 observed in C1 and T1 complexes respectively and this result was further strengthened by dipole moment analysis. C23Ti and C23Cr surfaces reflect higher dipole moment of 5.7126 and 4.7552 D respectively, indicating higher charge separation and stronger interactions upon the adsorption of chloronaphthalene (CLN). Rich blue color possessed by all complexes in the 3D isosurface of the Reduced Density Gradient (RDG) plots, signifies the presence of a very strong force of attraction as a result of hydrogen bond interaction. These results are consistent with the topological analysis and those of sensing mechanisms, thus, leading to a conclusive scientific report that C23Ti and C23Cr nanoclusters exhibit relatively better sensing efficacy for the detection of CLN. Hence, it can be employed in coupling future sensor device for CLN molecule.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3