Affiliation:
1. Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India
2. Department of Chemistry University of Delhi New Delhi 110007 India
Abstract
AbstractThe presence of a highly toxic pyridine carboxamide insecticide, namely flonicamid in water bodies poses a serious risk to both the aquatic ecosystem and human health. Therefore, a graphene oxide (GO) decorated with azo‐functionalized calix[4]pyrrole i. e. GO‐azocalix[4]pyrrole (GACP) was synthesized to study the removal of flonicamid insecticide through adsorption. The nano‐adsorbent was characterized by IR, XPS, TGA, Raman, SEM, and TEM data. The effect of concentration of flonicamid solution, contact time, adsorbent dosage, temperature, and pH was investigated in the batch adsorption process. Experimental data suggested that equilibrium was attained within 40 min and adsorption efficiency was 93.28 %. The synergistic effect of GO and azocalix[4]pyrrole played an important role in the adsorption. The Langmuir isotherm was followed and the maximum adsorption capacity was found to be 11.43 mg/g. The pseudo‐second‐order kinetic data was well obeyed and thermodynamic investigation suggested the feasible and spontaneous nature of flonicamid onto GACP nanocomposite.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献