Efficacious Removal of Flonicamid Insecticide from Water by GO@functionalized Calix[4]pyrrole: Synergistic Effect in Adsorption

Author:

Raveena 12,Alka 1,Gandhi Namita1,Kumari Pratibha1ORCID

Affiliation:

1. Bio-organic material research laboratory Department of Chemistry Deshbandhu College University of Delhi, Kalkaji New Delhi 110019 India

2. Department of Chemistry University of Delhi New Delhi 110007 India

Abstract

AbstractThe presence of a highly toxic pyridine carboxamide insecticide, namely flonicamid in water bodies poses a serious risk to both the aquatic ecosystem and human health. Therefore, a graphene oxide (GO) decorated with azo‐functionalized calix[4]pyrrole i. e. GO‐azocalix[4]pyrrole (GACP) was synthesized to study the removal of flonicamid insecticide through adsorption. The nano‐adsorbent was characterized by IR, XPS, TGA, Raman, SEM, and TEM data. The effect of concentration of flonicamid solution, contact time, adsorbent dosage, temperature, and pH was investigated in the batch adsorption process. Experimental data suggested that equilibrium was attained within 40 min and adsorption efficiency was 93.28 %. The synergistic effect of GO and azocalix[4]pyrrole played an important role in the adsorption. The Langmuir isotherm was followed and the maximum adsorption capacity was found to be 11.43 mg/g. The pseudo‐second‐order kinetic data was well obeyed and thermodynamic investigation suggested the feasible and spontaneous nature of flonicamid onto GACP nanocomposite.

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3