Adsorptive Recovery of Heavy Metal Ions from Aquatic Systems Using Metal‐Organic Frameworks: A Perspective in the Sustainable Development of Nanomaterials

Author:

Selvam Abhyavartin1,Parmar Prathu Raja2,Bandyopadhyay Dipankar2,Chakrabarti Sandip1ORCID

Affiliation:

1. Amity Institute of Nanotechnology Amity University Noida (U.P) 201303 India

2. Department of Chemical Engineering & Centre for Nanotechnology Indian Institute of Technology Guwahati Assam India 781039

Abstract

AbstractRapid industrialization in the developing countries has facilitated the unwanted mixing of wastes into the already depleting sources of potable, domestic and industrial water. In particular, the mixing of toxic heavy metal wastes into the aquatic resources have not only increased the scarcity of water at the different levels of usage but also hygiene of the ecosystem is further threatened by the presence of abysmal quality of aquatic environment around the living world. Thus, it has become quite imperative to mitigate such problems through the removal of such water contaminants at the sources before supplied for a specific purpose. In this direction, among the other available mass transfer techniques, specific and efficient adsorption of heavy metal species on the nanomaterials such as metal‐organic frameworks (MOFs) are found to be a promising method of heavy metal ions recovery. This reports targets to provide a new perspective into heavy metal ions removal from wastewater as a rationale for sustainable nanomaterial engineering through the recycling of toxic metal species as precious precursors in the synthesis of nanomaterials. Decades of exploring materials sciences led to the generation of groundbreaking materials of nanoscale regime, which has advanced myriad avenues of science and technology, viz. electronic, energy, biomedical, environmental, agriculture applications, and more. In this regard, nanotechnology has had a global impact by several folds, which can be observed in all day‐to‐day facilities. This perspective aims to conceptualize a strategy of wastewater decontamination through the adsorptive retrieval of heavy metal species to be subsequently recycled in the design of smart nanomaterials.

Publisher

Wiley

Subject

General Chemistry

Reference104 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3