Therapeutic Effect of 1,3‐Thiazin‐6‐One for the Treatment of Brain Cancer Through Increased Accumulation in the Brain Glioblastoma Cells

Author:

Zhang Junhuai1,Yin Luqiang2,Li Junshan3,Xu Zhongye3ORCID

Affiliation:

1. The Department of Neurosurgery The First People's Hospital of Longquanyi District 402760 Chengdu, Sichuan China

2. The Department of General Medicine Bishan Hospital of Chongqing Bishan hospital of Chongqing Medical University 402760 Chongqing China

3. The Department of Neurosurgery Bishan Hospital of Chongqing Bishan hospital of Chongqing Medical University 402760 Chongqing China

Abstract

AbstractIn the present study a library of five (2‐(amino)‐1,3‐thiazin‐6‐one) compounds was synthesized and investigated as against glioblastoma cells in vitro and in vivo in the mice model. The results revealed that all of the five 1,3‐thiazin‐6‐one compounds (4a, 4b, 4c, 4d and 4e) exhibited cytotoxicity against U87MG and 9 L brain cancer cell lines. Moreover, it was found that 9 L cells showed slightly higher sensitivity towards the compounds 4a, 4b, 4c, 4d and 4e compared to U87MG cells. It was observed that the compounds 4a, 4b, 4c, 4d and 4e showed a time‐dependent increase in uptake efficiency by U87MG and 9 L cells. Furthermore, the data revealed that uptake of the compounds and therefore internalization was maximum during initial 1 h of the treatment. Among the synthesized compounds, compound 4c containing trifluoromethyl moiety showed higher uptake efficiency compared to the compound 4a, 4b, 4d and 4e. Treatment of U87MG and 9 L cell tumor spheroids with compound 4c significantly (P<0.05) inhibited the tumor growth compared to the control spheroids. In vivo data revealed that treatment with compound 4c led to a significant (P<0.05) decrease in glioblastoma growth in mice in dose‐dependent manner. Growth of glioblastoma in mice was almost completely inhibited after 28 days of treatment with 2 mg/kg dose of compound 4c. Pharmacokinetic studies showed that compound 4c remained in circulation for longer duration in mice and its terminal half‐life was found to be 6.5 h. Treatment of U87MG and 9 L cells with compound 4c led to a prominent decrease in expression of CYR61 protein. In conclusion, findings of the present study suggest that compound 4c acts as a potential therapeutic agent for the treatment of advanced brain cancer through activation of Hippo pathway. Therefore, more studies need to be performed to investigate the detailed mechanism underlying the inhibitory effect of compound 4c against the glioblastoma.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3