Affiliation:
1. School of Emergency Management and Safety Engineering China University of Mining and Technology Beijing 100083 China
2. State Key Laboratory of Coal Resources and Safe Mining China University of Mining and Technology Beijing 100083 China
3. State Key Laboratory of Coal Mine Disaster Dynamics and Control School of Resources and Safety Engineering Chongqing University Chongqing 400044 China
Abstract
AbstractHydrogen sulfide (H2S) is a highly toxic, and flammable acid gas that is widely present in confined spaces. However, conventional adsorption materials are inefficient and have poor reuse properties. Metal‐organic frameworks (MOFs) show potential viability as novel materials in gas adsorption. Herein, mainstream MOFs were investigated based on molecular simulation techniques to explore the differences contributing to H2S adsorption. The adsorption process of H2S in MOFs was simulated by Grand Canonical Monte Carlo (GCMC) method, and the diffusion behavior was investigated based on molecular dynamics (MD) simulations. The results showed that the interaction energy and isosteric heat of adsorption were important criteria for determining the adsorption performance of H2S. The regulation of open metal sites could help to further enhance the adsorption of H2S, and the pore structure of MOFs affected the capture of H2S. A higher self‐diffusion rate implies faster H2S capture. Hydrogen bonds affect the trapping efficiency of MOFs for H2S and the relative positions of ligands in the benzene ring cause subtle differences in adsorption. This study provides design strategies for the improvement of new high‐performing MOFs for H2S adsorption in confined spaces.
Funder
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献